翻訳と辞書
Words near each other
・ Periodic graph (geometry)
・ Periodic graph (graph theory)
・ Periodic inventory
・ Periodic limb movement disorder
・ Periodic matrix set
・ Periodic paralysis
・ Periodic point
・ Periodic points of complex quadratic mappings
・ Periodic poling
・ Periodic Report of the United States of America to the United Nations Committee Against Torture
・ Periodic Review Board
・ Periodic Review Secretariat
・ Periodic sentence
・ Periodic sequence
・ Periodic steady-state analysis
Periodic summation
・ Periodic systems of small molecules
・ Periodic table
・ Periodic table (crystal structure)
・ Periodic table (disambiguation)
・ Periodic table (electron configurations)
・ Periodic table (large cells)
・ Periodic table of shapes
・ Periodic travelling wave
・ Periodic trends
・ Periodical and Electronic Press Union
・ Periodical cicadas
・ Periodical literature
・ Periodical Press Galleries of the United States Congress
・ Periodicals librarian


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Periodic summation : ウィキペディア英語版
Periodic summation
In signal processing, any periodic function, s_P(t)  with period P, can be represented by a summation of an infinite number of instances of an aperiodic function, s(t), that are offset by integer multiples of P.  This representation is called periodic summation:
:s_P(t) = \sum_^\infty s(t + nP) = \sum_^\infty s(t - nP).
When  s_P(t)  is alternatively represented as a complex Fourier series, the Fourier coefficients are proportional to the values (or "samples") of the continuous Fourier transform, S(f) \ \stackrel \ \mathcal\,  at intervals of 1/P.  That identity is a form of the Poisson summation formula. Similarly, a Fourier series whose coefficients are samples of  s(t)  at constant intervals (T) is equivalent to a periodic summation of  S(f),  which is known as a discrete-time Fourier transform.
The periodic summation of a Dirac delta function is the Dirac comb. Likewise, the periodic summation of an integrable function is its convolution with the Dirac comb.
== Quotient space as domain ==

If a periodic function is represented using the quotient space domain
\mathbb/(P\mathbb) then one can write
:\varphi_P : \mathbb/(P\mathbb) \to \mathbb
:\varphi_P(x) = \sum_ s(\tau)
instead. The arguments of \varphi_P are equivalence classes of real numbers that share the same fractional part when divided by P.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Periodic summation」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.